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Abstract14

Semantic property listing tasks require participants to generate short propositions (e.g.,15

<barks>, <has fur>) for a specific concept (e.g., dog). This task is the cornerstone of the16

creation of semantic property norms which are essential for modelling, stimuli creation, and17

understanding similarity between concepts. However, despite the wide applicability of18

semantic property norms for a large variety of concepts across different groups of people, the19

methodological aspects of the property listing task have received less attention, even though20

the procedure and processing of the data can substantially affect the nature and quality of21

the measures derived from them. The goal of this paper is to provide a practical primer on22

how to collect and process semantic property norms. We will discuss the key methods to23

elicit semantic properties and compare different methods to derive meaningful24

representations from them. This will cover the role of instructions and test context, property25

pre-processing (e.g., lemmatization), property weighting, and relationship encoding using26

ontologies. With these choices in mind, we propose and demonstrate a processing pipeline27

that transparently documents these steps resulting in improved comparability across28

different studies. The impact of these choices will be demonstrated using intrinsic (e.g.,29

reliability, number of properties) and extrinsic measures (e.g., categorization, semantic30

similarity, lexical processing). This practical primer will offer potential solutions to several31

longstanding problems and allow researchers to develop new property listing norms32

overcoming the constraints of previous studies.33

Keywords: semantic, property norm task, tutorial34
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A practical primer on processing semantic property norm data35

Semantic properties are assumed to be, entirely or in part, the building blocks of36

semantic representation - the knowledge we have of the world - by a variety of theories (e.g.,37

Collins & Quillian, 1969; Jackendoff, 1992, 2002; Minsky, 1975; Norman & Rumelhart, 1975;38

Saffran & Sholl, 1999; Smith & Medin, 1981) and computational models (Caramazza,39

Laudanna, & Romani, 1988; Farah & McClelland, 1991; Humphreys & Forde, 2001). Within40

this perspective, the meaning of a concept is conceived as a distributed pattern of semantic41

properties, which convey multiple types of information (Cree & McRae, 2003; Plaut, 2002;42

Rogers et al., 2004). For example, the concept HORSE can be described by encyclopedic43

(<is a mammal>), visual (<is furry>, <has legs>, <has a tail>, <has a mane>),44

functional (<used for racing>), and motor (<gallops>) information. Given the relevance of45

semantic properties in shaping theories of semantic representation, researchers have46

recognized the value of collecting semantic property production norms. Typically, in the47

property generation task, participants are presented with a set of concepts and are asked to48

list the properties they think are characteristic for each concept meaning. Generally, in this49

task, the concepts are called cues, and the responses to the cue are called features1. While50

the method is most frequently used to study the semantic representations of concrete51

concepts and categories (McRae, Cree, Seidenberg, & McNorgan, 2005; Rosch & Mervis,52

1975; Smith, Shoben, & Rips, 1974), it has also been used for other types of concepts,53

corresponding to verbs (Vinson & Vigliocco, 2008), events, and abstract concepts (Lebani,54

Lenci, & Bondielli, 2016; Recchia & Jones, 2012; Wiemer-Hastings & Xu, 2005).55

On the one hand, many studies adopted the property generation task itself to make56

inferences about word meaning and its computation (Recchia & Jones, 2012; Santos,57

Chaigneau, Simmons, & Barsalou, 2011; Wiemer-Hastings & Xu, 2005; Wu & Barsalou,58

2009). On the other hand, researchers employed the property listing task in order to provide59

1Throughout this article, features will be distinguished from cues using angular brackets and italic font.
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other researchers with a tool of standardized word stimuli and relative semantic measures.60

Indeed, based on data obtained from the property production task, it is then possible to61

calculate numerous measures and distributional statistics both at the feature and the62

concept level. For example, these feature data can be used to determine the semantic63

similarity/distance between concepts, often by calculating the feature overlap or number of64

shared features between concepts (Buchanan, Valentine, & Maxwell, 2019; McRae et al.,65

2005; Montefinese, Vinson, & Ambrosini, 2018; Montefinese, Zannino, & Ambrosini, 2015;66

Vigliocco, Vinson, Lewis, & Garrett, 2004), or how different types (Kremer & Baroni, 2011;67

Zannino et al., 2006a) and dimensions of feature informativeness, such as, distinctiveness68

(Duarte, Marquié, Marquié, Terrier, & Ousset, 2009; Garrard, Lambon Ralph, Hodges, &69

Patterson, 2001), cue validity (Rosch & Mervis, 1975), relevance (Sartori & Lombardi, 2004),70

semantic richness (Pexman, Hargreaves, Siakaluk, Bodner, & Pope, 2008), and significance71

(Montefinese, Ambrosini, Fairfield, & Mammarella, 2014) are distributed across concepts.72

Efficient ways to collect data online have boosted the availability of large feature listing73

data sets. These semantic feature norms are now available across different languages: Dutch74

(De Deyne et al., 2008; Ruts et al., 2004), English (Buchanan, Holmes, Teasley, & Hutchison,75

2013; Buchanan et al., 2019; Devereux, Tyler, Geertzen, & Randall, 2014; Garrard et al.,76

2001; McRae et al., 2005; Vinson & Vigliocco, 2008), German (Kremer & Baroni, 2011),77

Italian (Catricalà et al., 2015; Kremer & Baroni, 2011; Montefinese, Ambrosini, Fairfield, &78

Mammarella, 2013; Zannino et al., 2006b), Portuguese (Marques, Fonseca, Morais, & Pinto,79

2007), and Spanish (Vivas, Vivas, Comesaña, Coni, & Vorano, 2017) as well as for blind80

participants (Lenci, Baroni, Cazzolli, & Marotta, 2013). However, these norms vary81

substantially in the procedure of data collection and their pre-processing, and this does not82

facilitate performing cross-language comparisons and, thus, making inferences about how83

semantic representations are generalizable across languages.84

First, there is a lack of agreement in the instructions provided to the participants.85
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Indeed, while some studies use an open-ended verbal feature production (Buchanan et al.,86

2013, 2019; De Deyne et al., 2008; Montefinese et al., 2013) where participants can list the87

features related to the concept with any kind of semantic relation, other studies use a88

constrained verbal feature production (Devereux et al., 2014; Garrard et al., 2001) where89

participants were instructed to use specific semantic relations between cue concept and90

features, such as, for example, <is . . .>, <has . . .>, <does . . .>, <made of . . .>, and so91

forth. Moreover, authors could instruct the participants to produce a single word as a92

feature instead of a multiple-word description. This latter case could also determine a93

problem on subsequent coding steps that affect the identification of pieces of information.94

For example, if the participant listed the feature <has four wheels> for the concept CAR,95

there is no consensus if this feature should be divided into <has wheels> and <has four96

wheels>, under the assumption that the participant provided two pieces of information, or97

rather if it should be considered as a unique feature. Second, some authors gave a time limit98

to provide the features descriptions (Kremer & Baroni, 2011; Lenci et al., 2013; Marques et99

al., 2007) or a limited number of features to be listed (De Deyne et al., 2008), with a possible100

influence on a number of feature-based measures (e.g., semantic richness or distinctiveness).101

Because the feature listing task is a verbal task and language is very productive (i.e.,102

the same feature can be expressed in many different ways), few features will be listed in103

exactly the same way across participants. To be able to derive reliable quantitative measures,104

nearly all studies specify a series of pre-processing steps to group verbal utterances about the105

same underlying conceptual property together. The main problem is that there is no106

agreement about how to code/pre-process data derived from the feature listing task.107

Recoding features is sometimes done in manually (McRae et al., 2005) whereas others use108

semi-automatic procedures, especially for larger datasets (Buchanan et al., 2019). Further109

points of debate are related to the inclusion/exclusion of certain types of responses. For110

example, unlike previous semantic norms (McRae et al., 2005; Montefinese et al., 2013; Vivas111

et al., 2017), Buchanan et al. (2019) included idiosyncratic features (features produced only112
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by one or a few number of participants) if they were in the top listed features, ambiguous113

words (words with multiple meanings), and created a special coding for affixes of the root114

words. Moreover, they discarded stop words, such as, the, an, of, and synonyms were treated115

as different entries.116

While hand-coding features leads to features that concise, easily interpretable, and117

highly predictive of semantic behavior, the increasing scale of recent studies and more118

powerful natural language processing techniques make automatic procedures an attractive119

alternative for assistance in processing language data. Moreover, building standard120

automatic procedures to process feature-listing data would not only add transparency to the121

process but would also reduce human errors and allow a generalization of the data across122

languages. For the first time, in this study, we propose an automatic procedure to code the123

raw feature data derived from a semantic feature listing task. The next sections provide a124

tutorial on how raw feature data might be processed to a more compact feature output. The125

tutorial is written for R and is fully documented, such that users can adapt it to their126

language of choice (https://github.com/doomlab/FLT-Primer). Figure 1 portrays the127

proposed set of steps including spell checking, lemmatization, exclusion of stop words, and128

final processing in a multi-word sequence approach or a bag of words approach. After129

detailing these steps, the final data form will evaluated and compared to previous norms to130

determine the usefulness of this approach.131

Materials and Data Format132

You can load the entire set of libraries for this tutorial as shown below using133

dependencies.R found online2.134

2A packrat project compilation is available on GitHub for reproducibility (Ushey, McPherson, Cheng,

Atkins, & Allaire, 2018), and this manuscript was written in Rmarkdown with papaja (Aust & Barth, 2017).

https://github.com/doomlab/FLT-Primer
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library(here)

library(dplyr)

#Spelling

library(hunspell)

library(tidytext)

library(stringi)

#Lemmatization

library(koRpus)

library(koRpus.lang.en)

library(tokenizers)

#Stopwords

library(stopwords)

The data can then be imported with importData.R. Additionally, the answers from135

participants may need to be normalized into lowercase for consistency.136

# Importing the raw feature lists

X <- read.csv("../raw_data/tidy_words.csv", stringsAsFactors = F)

## Lower case to normalize

X$feature_response <- tolower(X$feature_response)

The data for this tutorial includes 16,544 unique concept-feature responses for 226137

concepts from Buchanan et al. (2019). The concepts were taken from McRae et al. (2005),138

Vinson and Vigliocco (2008), and Bruni, Tran, and Baroni (2014). The concepts include 185139

nouns, 25 verbs, and 16 adjectives. The concepts were both abstract and concrete, and to140

describe the concepts, the concreteness ratings collected by Brysbaert, Warriner, and141

Kuperman (2014) can be used. In their study, they asked participants to rate words on a142

scale ranging from 1 - abstract (language-based) - to 5 - concrete (experience-based) -143

concepts. Nouns were rated as most concrete: M = 4.59 (SD = 0.52), followed by adjectives:144

M = 3.78 (SD = 0.81), and verbs: M = 3.57 (SD = 0.79). The feature listing data consist of145

a text file where concept-feature observation is a row and each column is a variable. An146

example of these raw data are shown in Table 1, where the cue column is the cue, and the147

feature_response column denotes a single participant’s response. The original data can be148

found at https://osf.io/cjyzw/.149

https://osf.io/cjyzw/
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The data was collected using the instructions provided by McRae et al. (2005),150

however, in contrast to the suggestions for consistency detailed above (Devereux et al., 2014),151

each participant was simply given a large text box to include their answer. Each answer152

includes multiple embedded features, and the tutorial proceeds to demonstrate potential153

processing addressing the additional challenges in unstructured data of this nature. Figure 1154

portrays the suggested data processing steps. With structured data entry for participants155

(e.g., asking participants to type one feature on each line), the multi-word sequence step156

would be implemented within the data collection design, rather than post-processing. This157

tutorial presents the more difficult scenario to be applicable to more data collection methods.158

Spelling159

The first step (see Figure 1) in processing the features consists of identifying and160

replacing spelling mistakes. Spell checking can be automated with the hunspell package in161

R (Ooms, 2018) using spellCheck.R. Each feature_response can be checked for162

misspellings across an entire column of answers, which is in the X dataset. Because163

participants were recruited in the United States, we used the American English dictionary.164

The hunspell vignettes provide details on how to import your own dictionary for165

non-English languages. The choice of dictionary should also normalize between multiple166

variants of the same language, for example, the "en_GB" would convert to British English167

spellings.168

# Extract a list of words

tokens <- unnest_tokens(tbl = X, output = token, input = feature_response)

wordlist <- unique(tokens$token)

# Spell check the words

spelling.errors <- hunspell(wordlist)

spelling.errors <- unique(unlist(spelling.errors))

spelling.sugg <- hunspell_suggest(spelling.errors, dict = dictionary("en_US"))

The result from the hunspell() function is a list object of spelling errors for each row169
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of data. For example, when responding to APPLE, a participant wrote <fruit, grocery store,170

orchard, red, green, yelloe, good with peanut butter, good with caramell>, and the spelling171

errors were denoted as <yelloe> and <caramell>. After checking for errors, the172

hunspell_suggest() function was used to determine the most likely replacement for each173

error. For <yelloe>, both <yellow> and <yell> were suggested, and <caramel> and174

<camel> were suggested for <caramell>.175

Answers are provided in the most probable order, therefore, the first suggestion is176

selected as the correct answer. These answers are compiled into a spelling dictionary, which177

is saved for reproducibility and can be used to manually check the validity of the suggestions178

in a final (optional) step. In addition to the hunspell dictionary, an auxiliary dictionary with179

pre-coded error responses and corrections could also be added at this stage to catch any false180

positives by adding entries to the spelling.dict. For example, by examining181

spelling.dict, we found entries that would need to be corrected: tast became tacit, frends182

became fends, and musles became mules. Since the spelling dictionary is saved this will183

facilitate the additional step of manually examining the output for incorrect suggestions and184

to add their own corrections. This file could then be reloaded and used in the step below to185

provide adjusted spelling corrections. Other paid alternatives, such as Microsoft’s Bing Spell186

Check, can be a useful avenue for datasets that may contain brand names (i.e, apple versus187

Apple) or slang terms and provides context sensitive corrections (e.g., keeping Apple as a188

response to computer, but not as a response to green).189

# Pick the first suggestion

spelling.sugg <- unlist(lapply(spelling.sugg, function(x) x[1]))

spelling.dict <- as.data.frame(cbind(spelling.errors,spelling.sugg))

spelling.dict$spelling.pattern <- paste0("\\b", spelling.dict$spelling.errors, "\\b")

# Write out spelling dictionary

write.csv(x = spelling.dict, file = "../output_data/spelling.dict.csv",

fileEncoding = "utf8", row.names = F)

As noted, data was collected with a large text box, allowing participants to list190
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multiple features to the target cue. Participants often used extra spacing, tabs or other191

punctuation to denote separate answers to the cue. The unnest_tokens() function from192

tidytext can be used to split their answers into separate response lines and trimws() to193

remove all extra white spaces (De Queiroz et al., 2019).194

# Parse features

tokens <- unnest_tokens(tbl = X, output = token,

input = feature_response, token = stringr::str_split,

pattern = " |\\, |\\.|\\,|\\;")

tokens$token <- trimws(tokens$token,

which = c("both", "left", "right"),

whitespace = "[ \t\r\n]")

To finalize our data cleaning, we can remove blank lines, and use195

stri_replace_all_regex() is used to replace the spelling errors with their corrections196

from the stringi package (Gagolewski & Tartanus, 2019). If the spelling.dict output file197

was manually edited, it can be (re)loaded here with read.csv to update with the adjusted198

spelling corrections3. The spell checked dataframe is then output to a comma delimited file199

to preserve each workflow step.200

# Remove empty features

tokens <- tokens[!tokens$token =="", ]

tokens$corrected <- stri_replace_all_regex(str = tokens$token,

pattern = spelling.dict$spelling.pattern,

replacement = spelling.dict$spelling.sugg,

vectorize_all = FALSE)

# Rename columns

tokens <- tokens %>%

rename(feature = corrected) %>%

select(cue, feature)

# Write processed file

write.csv(x = tokens,file = "../output_data/spellchecked.features.csv",

fileEncoding = "utf8",row.names = F)

3For transparency, the updated csv file should be renamed, which also practically keeps one from overwriting

their adjustments if they rerun their code. The csv should be loaded as spelling.dict to continue with the

code below.
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Lemmatization201

The next step groups different word forms that share the same lemma. The process of202

lemmatizing words uses a trained dictionary to convert all tokens part of a lexeme set (i.e.,203

all words forms that have the same meaning, am, are, is) to a common lemma (i.e., be)4.204

Lemmatization is performed using the TreeTagger program (Schmid, 1994) and205

implemented through the koRpus package in R (Michalke, 2018). TreeTagger is a trained206

tagger designed to annotate part of speech and lemma information in text, and parameter207

files are available for multiple languages. We will create a unique set of tokenized words to208

lemmatize to speed computation, as shown in lemmatization.R.209

# Open the spell checked data

X <- read.csv("../output_data/spellchecked.features.csv", stringsAsFactors = F)

# Extract the list of updated tokens

tokens <- unnest_tokens(tbl = X, output = word, input = feature)

cuelist <- unique(tokens$cue)

The treetag() function calls the installation of TreeTagger to provide part of speech210

tags and lemmas for each token. Importantly, the path option should be the directory of the211

TreeTagger installation.212

# Create a dataframe for lemmas

tokens.tagged <- data.frame(doc_id=character(),

token=character(),

wclass=character(),

lemma=character(),

stringsAsFactors=FALSE)

# Loop over cues and create lemmas + POS tags

4We mainly focus on lemmatization and do not proceed stemming the word because it introduces

additional ambiguity. More specifically, stemming involves processing words using heuristics to remove affixes

or inflections, such as ing or s. The stem or root word may not reflect an actual word in the language, as

simply removing an affix does not necessarily produce the lemma. For example, in response to AIRPLANE,

<flying> can be easily converted to <fly> by removing the ing inflection. However, this same heuristic

converts the feature <wings> into <w> after removing both the s for a plural marker and the ing participle

marker.
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for (i in 1:length(cuelist)){

temp.tag <- suppressWarnings(

suppressMessages(

treetag(c(X$feature[X$cue == cuelist[i]], "NULL"),

treetagger="manual", format="obj",

TT.tknz=FALSE, lang="en", doc_id = cuelist[i],

# These parameters are based on your computer

TT.options=list(path="~/TreeTagger", preset="en"))))

temp.tag <- temp.tag@TT.res %>%

mutate_if(is.factor, as.character)

tokens.tagged <- tokens.tagged %>%

bind_rows(temp.tag %>%

select(doc_id, token, wclass, lemma))

}

This function returns a tagged corpus object, which can be converted into a dataframe213

of the token-lemma information. TreeTagger will return <unknown> for unknown values and214

@card@ for numbers, and these values were replaced with the original token. Table 2215

portrays example results from TreeTagger.216

tokens.tagged <- tokens.tagged %>%

rename(cue = doc_id, feature = token, pos = wclass)

# Clean up unknown lookups

tokens.tagged$lemma[tokens.tagged$lemma == "<unknown>"] <- tokens.tagged$feature[tokens.tagged$lemma == "<unknown>"]

tokens.tagged$lemma[tokens.tagged$lemma == "@card@"] <- tokens.tagged$feature[tokens.tagged$lemma == "@card@"]

tokens.tagged$lemma <- tolower(tokens.tagged$lemma)

# Write processed file

write.csv(x = tokens.tagged, file = "../output_data/lemmatized.features.csv",

fileEncoding = "utf8", row.names = F)

Stopwords217

As shown in Figure 1, the next stage of processing would be to exclude stopwords, such218

as the, of, but. The stopwords package (Benoit, Muhr, & Watanabe, 2017) includes a list of219

stopwords for more than 50 languages. At this stage, the feature (original tokens, not220

lemmatized) or lemma (lemmatized tokens) column can be used depending on researcher221
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selection. This code is included in stopWordRemoval.R. Within the filter command, we222

have excluded all lemmas in the stopword list provided by the stopwords library. Using223

stopwords(language = "en", source = "snowball"), one can view the stopword list224

and edit it for their own needs.225

# Open the lemmatized data

X <- read.csv("../output_data/lemmatized.features.csv", stringsAsFactors = F)

# Remove punctuation and stopwords from lemmas

X$lemma <- gsub("\\-", " ", X$lemma)

X$lemma <- gsub("^$|\002", NA, trimws(X$lemma))

X.nostop <- X %>%

filter(!grepl("[[:punct:]]", lemma)) %>%

filter(!lemma %in% stopwords(language = "en", source = "snowball")) %>%

filter(!is.na(lemma))

# Write processed file

write.csv(x = X.nostop, file = "../output_data/nostop.lemmas.csv",

fileEncoding = "utf8", row.names = F)

Multi-word Sequences226

Multi-word sequences are often coded to mimic a Collins and Quillian (1969) semantic227

network, where words are nodes and edges are labelled with relations such as “is-a” or228

“has-a”. Some instructions specify the use of specific relation types (Devereux et al., 2014;229

Garrard et al., 2001), in which case pre-encoded the following step can be omitted. A230

potential solution for processing unstructured data involves identifying patterns that mimic231

“is-a” and “has-a” strings. Examples of such an approach is the Strudel model (Baroni,232

Murphy, Barbu, & Poesio, 2010) in which meaningful relations are grouped together using a233

small set of highly specific regular expressions. An examination of the coding in McRae et al.234

(2005) and Devereux et al. (2014) indicates that the feature tags are often adverb-adjective235

(<usually-sweet>), verb-noun (<made-wood>), or verb-adjective-noun236

(<requires-lighting-source>) sequences. Using TreeTagger on each concept’s answer set, we237

can obtain the parts of speech in context for each lemma. With dplyr (Wickham, Francios,238
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Henry, Muller, & Rstudio, 2019), new columns are added to tagged data to show all bigram239

and trigram sequences. All adverb-adjective, verb-noun, and verb-adjective-noun240

combinations are selected, and any words not part of these multi-word sequences are treated241

as unigrams. Finally, the count() function is used to tabulate the final count of n-grams242

and their frequency (multiwordSequences.R).243

# Open the no stop words data

X <- read.csv("../output_data/nostop.lemmas.csv", stringsAsFactors = F)

# Combine lemmas and POS

X <- X %>%

mutate(two.words = paste(lemma, lead(lemma), sep = " "),

three.words = paste(lemma, lead(lemma),

lead(lemma, n = 2L), sep = " "),

two.words.pos = paste(pos, lead(pos), sep = "."),

three.words.pos = paste(pos, lead(pos),

lead(pos, n = 2L), sep = "."))

# Patterns

adverb.adj <- grep("\\badverb.adj", X$two.words.pos)

verb.nouns <- grep("\\bverb.noun", X$two.words.pos)

verb.adj.nouns <- grep("\\bverb.adjective.noun", X$three.words.pos)

# Use combined and left over lemmas

X$combined.lemmas <- NA

X$combined.lemmas[c(adverb.adj, verb.nouns)] <- X$two.words[c(adverb.adj,verb.nouns)]

X$combined.lemmas[verb.adj.nouns] <- X$three.words[verb.adj.nouns]

X$combined.lemmas[-c(verb.nouns, verb.nouns+1, verb.adj.nouns,

verb.adj.nouns+1, verb.adj.nouns+2)] <- X$lemma[-c(verb.nouns, verb.nouns+1,

verb.adj.nouns, verb.adj.nouns+1,

verb.adj.nouns+2)]

#Create cue-lemma frequency

multi.words <- X %>%

filter(!is.na(combined.lemmas)) %>%

group_by(cue) %>%

count(combined.lemmas)

# Write processed file

write.csv(x = multi.words, file = "../output_data/multi.nostop.lemmas.csv",

fileEncoding = "utf8", row.names = F)

This procedure produces appropriate output, such as FINGERS <have fingernails>244

and COUCHES <have cushions>. One obvious limitation is the potential necessity to245



PROCESSING NORMS 15

match this coding system to previous codes, which were predominately hand processed.246

Further, many similar phrases, such as the ones for ZEBRA shown below may require247

flexible regular expressions to ensure that the different codings for <is a horse> are all248

combined together, as shown in Table 3.249

Bag of Words250

To be able to evaluate the role of identifying multi-word sequences, we now describe an251

approach where this information is not retained. This bag of words approach simply treats252

each token as a separate feature to be tabulated for analysis. After stemming and253

lemmatization, the data can be processed as single word tokens into a table of frequencies for254

each cue word. The resulting dataframe is each cue-feature combination with a total for each255

feature from bagOfWords.R. Table 4 shows the top ten most frequent responses to ZEBRA256

given the bag of words approach.257

# Open the no stop words data

X <- read.csv("../output_data/nostop.lemmas.csv", stringsAsFactors = F)

# Create cue-lemma frequency

bag.words <- X %>%

group_by(cue) %>%

count(lemma)

# Write processed file

write.csv(x = bag.words, file = "../output_data/bag.nostop.lemmas.csv",

fileEncoding = "utf8", row.names = F)

Descriptive Statistics258

The finalized data now represents a processed set of cue-feature combinations with259

their frequencies for analysis. The data from Buchanan et al. (2019) was collected over260

multiple years with multiple sample sizes. The sample size for each cue was then merged261

with the finalized cue-feature information to control for differences in potential maximum262
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frequency. Table 5 includes descriptive statistics for the processed cue-feature set.263

Number of response types. First, the number of cue-feature combinations was264

calculated by taking the average number of cue-feature listings for each cue. Therefore, the265

total number of features listed for ZEBRA might be 100, while APPLE might be 45, and266

these values were averaged. More cue-feature combinations are listed for the multi-word267

approach, due to differences in combinations for some overlapping features as shown in Table268

3. The large standard deviation for both approaches indicates that cues have a wide range of269

possible features listed. For example for the cue ZEBRA, we find a total of 196 features,270

whereas for APPLE we find 134 features. We expect that the number of different response271

tokens is a function of the number of times a cue was presented in the study. To investigate272

this relation, we calculated the correlation provided represents the relation between sample273

size for a cue and the number of features listed for that cue. These values are high and274

positive, indicating that the number of unique features increases with each participant.275

Idiosyncratic responses. Potentially, many of the cue-feature combinations could276

be considered idiosyncratic. The next row of the table denotes the average number of277

cue-feature responses listed by less than 10% of the participants. This percent of responses is278

somewhat arbitrary, as each researcher has determined where the optimal criterion should be.279

For example, McRae et al. (2005) used 16% or 5/30 participants as a minimum standard,280

and Buchanan et al. (2019) recently used a similar criteria. Many cue-features are generated281

by a small number of participants, indicating that these are potentially idiosyncratic or part282

of long tailed distribution of feature responses with many low frequency features. The283

advantage to the suggested data processing pipeline and code provided here is the ability of284

each researcher to determine how many low-frequency features should be included.285

Response strength. The next two lines of Table 5 indicate cue-feature combination286

frequencies, such as the number of times ZEBRA <stripes> or APPLE <red> were listed by287

participants. The percent of responses is the frequency divided by sample size for each cue,288
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to normalize over different sample sizes present in the data. These average frequency/percent289

can be seen as a measure of response strength and were calculated for each cue, and then290

averaged over all cues. The correlation represents the average response strength for each cue291

related to the sample size for that cue. These frequencies are low, matching the results for a292

large number of idiosyncratic responses. The correlation between frequency of response and293

sample size is positive, indicating that larger sample sizes produce items with larger294

frequencies.295

Additionally, the correlation between response strength and sample size is negative,296

suggesting that larger sample sizes are often paired with more items with smaller response297

strengths. Figure 2 displays the correlations for the average cue-frequency responses and the298

response strength by sample size. It appears that the relationship between sample size and299

percent is likely curvilinear, rather than linear. The size of the points indicates the300

variability (standard deviation of each cue word’s average frequency or percent). Variability301

appears to increase linearly with sample size for average frequency, however, it is somewhat302

mixed for average percent. These results may imply a necessity to discuss common sample303

sizes for data collection (ns ~ 30) to determine the optimal sample size for an appropriate304

body of data for each cue word.305

Internal Comparison of Approach306

In this section, we show that the bag of words approach approximates the data from307

McRae et al. (2005), Vinson and Vigliocco (2008), and Buchanan et al. (2019), thus308

comparing data processed completely through code to datasets that were primarily hand309

coded. These datasets were recoded in a bag of words approach, and the comparison between310

all three is provided below. The multi-word sequence approach would be comparable if one311

or more datasets used the same structured data collection approach or with considerable312

hand coded rules for feature combinations. The data from open ended responses, such as the313
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Buchanan et al. (2019), could potentially be compared in the demonstrated multi-word314

sequence approach, if the raw data from other such projects were available.315

Cosine similarity is often used as a measure of semantic similarity, indicating the316

feature overlap between two sets of cue-feature lists. For each concept or cue it provides an317

estimate of similarity based using a vector consisting of features with magnitudes318

corresponding to their frequency. The formula is identical to a Pearson product correlation319

when the vectors are centered to have mean zeros. First, matching feature (i) frequencies of320

cues A and B are multiplied and then summed, and this value is divided by products of the321

vector length of A and B for all features:322

n∑
i=1

Ai × Bi√
n∑

i=1
A2

i ×
√

n∑
i=1

B2
i

As all of the frequencies are positive, these values can range from 0 (no overlap) to 1323

(perfect overlap). Two cosine values can be derived from the Buchanan et al. (2019) data:324

the raw cosine, which included all features as listed and the cosine for lemmatized responses.325

Each cue in the sample data for this project was compared to the corresponding cue in the326

Buchanan et al. (2019). The example participant responses provided in this tutorial are a327

subset of the Buchanan et al. (2019) data, and therefore, if the participant responses were328

processed in an identical fashion, the cosine values would be nearly 1. Additionally, if the329

processing detailed here matches the hand coding in the Buchanan et al. (2019), the overlap330

with the McRae et al. (2005) and Vinson and Vigliocco (2008) should be similar. These331

values were: original feature cosine = .54-.55, and lemmatized5 features = .66-.67. However,332

all previous datasets have been reduced by eliminating idiosyncratic features at various333

points, and therefore, we might expect that noise in the data would reduce the average334

5These results were lemmatized by creating a lookup dictionary from the features listed in the Buchanan

et al. (2019) norms.
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cosine values.335

Table 6 shows the role of using a cut-off for low-frequent or idiosyncratic responses by336

calculating the cosine values when using varying cut-offs or stopword filtering. On the left,337

the cosine values with stopwords are provided for both the original feature listed (i.e., no338

lemmatization) and the lemmatized features. The right side of the table includes the cosine339

values once stopwords have been removed. The removal of stopwords increases the match340

between sets indicating how removing these terms can improve prediction. When stop words341

were excluded, cosine values indicated somewhat comparable set of data, with lower values342

for McRae et al. (2005) than previous results in the original feature sets. These values343

portray that the data processed entirely in R produces a comparable set of results, albeit344

with added noise of small frequency features.345

External Comparison of Approach346

The MEN dataset (Bruni et al., 2014) contains cue-cue pairs of English words rating347

for similarity by Amazon Mechanical Turk participants for stimuli taken from the McRae et348

al. (2005) feature norms. In their rating task, participants were shown two cue-cue pairs and349

asked to select the more related pair of the two presented. Each pair was rated by 50350

participants, and thus, a score of 50 indicates high relatedness, while a score of 0 indicates351

no relatedness. The ratings for the selected set of cues provided in this analysis was 2 - 49352

with an average rating of 25.79 (SD = 12.00). The ratings were compared to the cosine353

calculated between cues using the bag of words method with and without stopwords. The354

correlation between bag of words cosines with stopwords and the MEN ratings was r = .54,355

95% CI [.42, .63], N = 179, indicating fair agreement between raters and cosine values. The356

agreement between ratings and bag of word cosine values was higher when stopwords were357

excluded, r = .70, 95% CI [.61, .76].358
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Discussion359

Semantic feature listing tasks are used across various disciplines and are likely to360

remain an important source of information about the subjective meaning of concepts. In this361

article we have outlined a workflow to process large datasets where features consist of362

unstructured short propositions derived from written language. The advantage to this363

workflow is two-fold. First, science practices are shifting to open procedures and practices364

(Nosek et al., 2015), and reproducible research is key (Peng, 2011). Second, automated365

processing provides faster data analysis than hand-coded systems, and the ability to examine366

how processing steps affect results. We have shown that the automated procedure provides a367

comparable set of results to the hand-coded systems from Buchanan et al. (2019), McRae et368

al. (2005), and Vinson and Vigliocco (2008). The addition of specialized lemmas and other369

word exclusions (i.e., <sometimes>, <usually>, <lot> or idiosyncratic features) would370

provide more reduction, and thus, more overlap between hand and automated processing.371

Further, the automated data processing showed positive correlations with external subjective372

ratings of cue-cue relatedness in the MEN dataset. We suggest the workflow shown in Figure373

1 and the suggested R code can provide a framework for researchers to use on their own data.374

In closing, the use of automated procedures will depend on specific use cases and cannot375

entirely replace careful human annotation (e.g. in the case of spell-checking). It can, however,376

greatly facilitate such checking.377

Extending the approach. An attractive property of the subjective feature listing378

task is that it results in transparent representations. As a result, many researchers have379

taken additional steps to group specific types of knowledge together, depending on semantic380

relations (e.g., taxonomy relations) or their mapping onto distinct brain regions (Fairhall &381

Caramazza, 2013). Typically this involves applying a hand-crafted coding scheme, which382

requires a substantial effort. One of the common ontologies is the one developed by Wu and383

Barsalou (2009). The ontology is structured as a hierarchical taxonomy for coding categories384
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as part of the feature listing task. It has been used in several projects, notably the McRae et385

al. (2005). Examples of the categories include taxonomic (synonyms, subordinates), entity386

(internal components, behavior, spatial relations), situation (location, time), and387

introspective properties (emotion, evaluation). Coding ontology may be best performed388

systematically with look-up rules of previously decided upon factors, however, clustering389

analyses may provide a potential avenue to explore categorizing features within the current390

dataset. One limitation to this method the sheer size of the idiosyncratic features as391

mentioned above, and thus, features smaller in number may be more difficult to group.392

Potentially, a simple ontology can be mapped using an approach similar to Strudel393

(structured dimension extraction and labeling, Baroni et al., 2010). Strudel is a corpus-based394

semantic model wherein cue words are found in a large text corpus and matched to nouns,395

verbs, and adjectives that appear near a concept. Using specific patterns of expected feature396

listing, Baroni et al. (2010) were able build a model of English concepts and their properties397

that aligned with semantic feature production norms. From this model, they were able to398

cluster properties based on their lexical patterns. For example, if a sentence included the399

phrase fruit, such as an apple, this lexical pattern would be classified as such_as+right,400

indicating that the concept (apple) was found to the right of the property (fruit) with the401

phrase such as connecting them. Using clustering, Baroni et al. (2010) were able to assign402

four ontology labels to properties: part, category, location, and function. Using these results,403

we can match 2279 of the bag of words features (5%). These features were predominately404

parts (39.7), followed by function (30.7), location (24.2), and category (5.4). Table 7405

indicates ten of the most frequent cue-feature pairs for each ontology label, excluding406

duplicate features across cues. An examination of the top results indicates coherent labels407

(parts: ZEBRA <stripe>, location: SHOE <foot>, and category: FURNITURE <table>);408

however, there are also a few mismatches (location: SCISSORS <cut>, function: LEAF409

<green>). This model represents an area in which one might begin to automate the labeling410

process, likely combined with other pre-defined rule sets. Taxonomic labeling often411
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represents a large time demand on a researcher or team and by shifting the burden of the412

taxonomic labeling to a semi-automated process, this time may be reduced. With the413

addition of ontology labels to property norm data, theoretical questions about semantic414

representation can be explored (Jones & Golonka, 2012; Santos et al., 2011).415

Some limitations. So far we have not investigated to what extend the automatic416

procedure leads to equally good representations for different types of concepts. More417

specifically, abstract concepts tend to have a larger number of features. This result can be418

explained by the larger context-variability of these concepts, but could also reflect to the419

level of detail in the specific ontologies used to code these features (Recchia & Jones, 2012).420

Pooling together features might improve the quality of the final representation, especially for421

these types of concepts. Potentially, this might require additional steps in which features are422

not only grouped based on surface properties but might also benefit from grouping423

synonymous words. Within this framework, the properties could be added within a lookup424

dictionary to further promote an open and transparent coding for data processing.425
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Table 1

Example of Data Formatted for Tidy Data

Cue Participant Answer

airplane you fly in it its big it is fast they are expensive they are at an airport

you have to be trained to fly it there are lots of seats they get very

high up

airplane wings engine pilot cockpit tail

airplane wings it flys modern technology has passengers requires a pilot can be

dangerous runs on gas used for travel

airplane wings flys pilot cockpit uses gas faster travel

airplane wings engines passengers pilot(s) vary in size and color

airplane wings body flies travel
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Table 2

Lemma and Part of Speech (POS) Information from TreeTagger

Cue Feature POS Lemma

airplane is verb be

airplane fast adverb fast

airplane they pronoun they

airplane are verb be

airplane expensive adjective expensive

airplane they pronoun they
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Table 3

Multi-Word Sequence Examples for Zebra

Cue Combined Lemmas N

zebra horse 27

zebra horse like 1

zebra look similar horse 1

zebra relate horse 2

zebra resemble small horse 1

zebra stripe similar horse 1
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Table 4

Bag of Words Examples for Zebra

Cue Lemma N

zebra stripe 64

zebra black 63

zebra white 61

zebra animal 54

zebra horse 32

zebra africa 28

zebra zoo 22

zebra leg 20

zebra life 20

zebra eat 17
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Table 5

Descriptive Statistics for Multi-word Sequences and Bag-of-words Approaches

Multi-Word Sequences Bag of Words

Statistics Mean SD r Mean SD r

Number of Cue-Features 192.27 99.14 .78 173.44 77.21 .67

Frequency of Idiosyncratic Response 183.29 97.38 .80 160.57 74.26 .69

Frequency of Cue-Feature Response 2.09 3.39 .65 2.70 4.76 .83

Percent of Cue-Feature Response 3.41 5.10 -.64 4.30 4.76 -.62

Note. The correlation (r) represents the relation between frequency of response and sample

size.
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Table 6

Cosine Overlap with Previous Data Collection

With Stopwords No Stopwords

Statistic Original Translated Original Translated

B Mean .55 .58 .69 .74

B SD .16 .16 .16 .15

M Mean .33 .50 .39 .59

M SD .15 .13 .18 .13

V Mean .50 .50 .60 .59

V SD .18 .18 .18 .19

Note. Translated values are hand coded lemmatization from

Buchanan et al. (2019). B: Buchanan et al. (2019), M: McRae et

al. (2005), V: Vinson & Vigliocco (2008). N values are 226,

61, and 68 respectively.
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Table 7

Top Ten Ontology Labels

Parts Function Location Category

brush use brush hair scissors cut flute instrument

lawn grass river water snow cold snow white

snail shell branch tree farm land elephant animal

river stream chair sit cabin wood cabbage green

radio music leaf plant rocket space dagger knife

elephant trunk kitchen food breakfast day apple fruit

zebra stripe hammer nail stone rock hammer tool

river flow garden flower bacon pig lion king

door open oven cook shoe foot cabbage vegetable

dragon fire leaf green toy play furniture table



PROCESSING NORMS 38

Figure 1 . Flow chart illustrating how feature lists are recoded to obtain a standard feature

format.
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Figure 2 . Correlation of sample size with the average cue-feature frequency (left) and percent

(right) of response for each cue for both processing approaches. Each point represents a cue

word, and the size of the point indicates the variability of the average frequency (left) or

percent (right).
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